A TOTAL SYNTHESIS OF FORSSMAN GLYCOLIPID, GLOBOPENTAOSYL CERAMIDE $IV^3GaiNAc\alpha Gb_4 Cer^{1)}$

Shigcki Nunomura, Masato Mori, Yukishige Ito, and Tomoya Ogawa* RIKEN (The Institute of Physical and Chemical Research), Wako-shi, Saitama, 351-01 Japan

Abstract: A first total synthesis of Forssman antigen, $GalNAc\alpha 1 \rightarrow 3GalNAc\beta 1 \rightarrow 3Gal\alpha 1 \rightarrow 4Gal\beta 1 \rightarrow 4Glc\beta 1 \rightarrow 1Cer$, was achieved in a stereoselective manner by using a glycopentaosyl fluoride as a key glycosyl donor for the crucial coupling with a ceramide equivalent.

Scheme 1 (TMB = 2, 4, 6-trimethylbenzoyl, TBDPS = Bu^tPh₂Si)

Forssman antigen that occurs² in many species of animals was first described³ in 1911 and was recently reported⁴ as an antigenic marker for a major subpopulation of murine macrophages resided preferentially in spleen and peripheral lymph The structure of this antigen nodes. was proposed⁵ in 1971 as globopentaosyl ceramide 1 from enzymic degradation study. In 1982 first synthesis of glycan part of 1 was achieved⁶ by Paulsen and Bunsch. We now describe a first total synthesis of 1 in a stereocontrolled manner, the ¹H-n.m.r. data of which was found identical with those⁷ of natural sample,

A retrosynthetic analysis of 1 led us to design a glycopentaosyl donor 2 that carries a stereocontrolling auxiliary⁸, 2,4,6-trimethylbenzoyl group at O-2a, and a reactive glycosyl acceptor, azido alcohol 3^9 , as a ceramide equivalent. Compound 2 was further disconnected into a

glycobiosyl donor 4 and a glycotriosyl acceptor 5 which were respectively designed as a thioglycoside 6 and a known¹⁰ glycotrioside 7.

Preparation of 6 was executed in 7 steps from 9^{11} in 23% overall yield as follows. AgOTf-Powdered molecular sieves 4A (MS4A) promoted glycosylation of 9 with 8^{12} in (CICH₂)₂ gave a 94% yield of an inseparable 5:1 mixture of 10^{13} and 12^{13} which was directly solvolyzed in 4:1 AcOH-H₂O at 80° and separated by a column of silica gel in 1:1 toluene-EtOAc to give 11^{13} (66%) and 13^{13} (13%). Conversion of 11 into 14^{13} was achieved in 3 steps (1 NaOMe in MeOH for 1 h at 20°, 2 HS(CH₂)₃SH¹⁴-Et₃N in MeOH for 12 h at 20°, 3 phthalic anhydride-Et₃N in Py for 2 h at 75°, then Ac₂O was added and 1 h at 75°, 56% overall). Deallylation of 14 with PdCl₂-AcONa in aq. AcOH¹⁵ was found inefficient and gave after acetylation of the products a 1:1 mixture of 15¹³ and 16¹³ in 80% yield. The situation was improved by use of a 1:3 mixture of (Ph₃P)₃RhCl-PdCl₂ to give a 70% yield of 15 along with a 29% yield of undesired 16. Treatment of 15 with Bu₃SnSMe and SnCl₄ in (ClCH₂)₂ for 4 h at 0° afforded thioglycoside 6¹³ in 95% yield.

Having the designed glycobiosyl donor 6 prepared, a key glycosylation of the glycotriosyl acceptor 7 with 6 was performed in CH_3NO_2 in the presence of $Bu_4NBr-CuBr_2-AgOTf-MS4A^{16}$ for

Scheme 3

13 h at 20° to give a 78% yield of a 10:1 mixture of desired β -D linked glycopentaoside 17¹³ and the α isomer 22 which were difficult to separate. The mixture was converted into a mixture of acetamido derivatives 18¹³ and 23¹³ in 2 steps (1 NH₂NH₂•H₂O in EtOH for 16 h at 80°, 2 Ac₂O-DMAP in Py, 93% overall) and then separated by a column of silica gel in 2:1 toluene-acetone. Conversion of 18 into a key glycosyl donor 21 which is equivalent to 2 in scheme 1 was smoothly achieved in 4 steps via 19¹³ and 20¹³ (1 10% Pd-C and H₂ in 7:3 MeOH-H₂O, 2 Ac₂O-DMAP in Py, 3 NH₂NH₂•AcOH in DMF¹⁷ for 1 h at 20°, 4 DAST¹⁸ in (ClCH₂)₂, 63% overall).

Crucial coupling between the key fluoride 21 and azido alcohol 3 was achieved according to Mukaiyama¹⁹ in the presence of SnCl₂ and AgOTf in (ClCH₂)₂ to give a 23% yield of 24¹³, which was further converted into the target 1¹³ in 5 steps via 25¹³ and 26¹³ (1 Ph₃P in aq. PhH²⁰ for 19 h at 45°, 2 C₁₃H₂₇COOH-2-chloro-1-methylpyridinium iodide-Bu₃N²¹ in (ClCH₂)₂ for 1 h at 20°, 3 Bu₄NF in THF, 4 1:4 0.1*M* NaOMe-THF for 2 h at 20°, 5 2:1 0.25*M* NaOMe-THF for 3 h at 60°, 67% overall).

In summary, a stereocontrolled total synthesis of globopentaosyl ceramide 1 was achieved for the first time by employing a thioglycoside 6 and a fluoride 20 as two key glycosyl donors, and the natural sample was unambiguously identified with the synthetic 1 through comparison of their 500 MHz ¹H-n.m.r. data.

Acknowledgments. We thank Dr. J. Uzawa, Mrs. T. Chijimatsu, and Mr. K. Fujikura for recording and measuring the NMR spectra and Ms. M. Yoshida and her staff for the elemental analyses. We also thank Ms. A. Takahashi and Ms. K. Moriwaki for their technical assistance.

References and Notes

- Part 69 in the series "Synthetic Studies on Cell-Surface Glycans". For part 68 see F. Yamazaki,
 S. Sato, T. Nukada, Y. Ito, and T. Ogawa, submitted for publication.
- 2 S. Hakomori in "Sphingolipid Biochemistry", J. N. Kanfer and S. Hakomori Eds., Plenum Press New York, NY, 99 (1983).
- 3 J. Forssman, Biochem. Z., 37, 78 (1911).
- 4 U. Bethke, B. Kniep, and P. F. Mühlradt, J. Immunology, 138, 4329 (1987).
- 5 B. Siddiqui and S. Hakomori, J. Biol. Chem., 246, 5766 (1971); T. Yamakawa, S. Nishimura, and A. Kamimura, Jap. J. Exp. Med., 35, 201 (1965).
- 6 H. Paulsen and A. Bünsch, Carbohydr. Res., 100, 143 (1982).
- 7 F. Inagaki, C. Kodama, M. Suzuki, and A. Suzuki, FEBS Lett., 219, 45 (1987).
- 8 S. Sato, S. Nunomura, T. Nakano, Y. Ito, and T. Ogawa, Tetrahedron Lett., 29, 4097 (1988).
- 9 M. Mori, Y. Ito, and T. Ogawa, Carbohydr. Res., in press. See also: R. R. Schmidt, T. Bär and H.-J. Apell, Angew. Chem. Int. Ed. Engl., 28, 793 (1987); Y. Ito, S. Sato, M. Mori, and T. Ogawa, J. Carbohydr. Chem., 7, 359 (1988).
- 10 S. Nunomura and T. Ogawa, Tetrahedron Lett., 29, 5681 (1988)
- 11 S. Sabesan and R. U. Lemieux, Can. J. Chem., 62, 644 (1984).
- 12 R. U. Lemieux and R. M. Ratcliffe, Can. J. Chem., 57, 1244 (1979).
- 13 Physical data for new compounds are compatible with the assigned structures and are given below. Values of $[\alpha]_D$ and $\delta_{H,C}$ were messured for the solution in CHCl₃ and CDCl₃, respectively,

at $23\pm3^{\circ}$ unless noted otherwise. 1: [α]D +46.1° (c 0.02, Py); δ H (49:1 (CD₃)₂SO-D₂O, 60°) 5.543 (td, 6.7 and 15.3 Hz, 5cer), 5.365 (dd, 6.7 and 15.3 Hz, 4cer), 4.824 (d, 3.7 Hz, 1c), 4.751 (d, 3.6 Hz, 1c), 4.564 (d, 7.8 Hz, 1d), 4.278 (d, 7.8 Hz, 1b), 4.179 (d, 7.8 Hz, 1a), 1.844 and 1.834 (2s, 2NAc), 0.854 (t, 6.7 Hz, 2CH₃). 6: $[\alpha]_D$ +137° (c 1.0); δ_H 5.961 (dd, 2.8 and 12.2 Hz, 3b), 5.412 (d, 3.7 Hz, 1b), 5.329 (d, 10.3 Hz, 1a); $\delta_{\rm C}$ 94.0 (¹J_{CH} 176 Hz, 1b), 81.1 (¹J_{CH} 156 Hz, 1a). 10 + 12 (5:1 mixture): $\delta_{\rm H}$ 5.593 and 5.581 (2s, in a ratio of 5:1, CHPh), 2.145, 2.050, and 2.044 (3s, 3Ac, 12), 2.140, 2.063, and 2.038 (3s, 3Ac, 10). 11: $[\alpha]_D$ +86.8° (c 1.7); δ_H 5.032 (d, 3.9 Hz, 1b), 4.370 (d, 8.1 Hz, 1a); δ_C 101.5 (${}^{1}I_{CH}$ 160 Hz, 1a), 94.8 (¹J_{CH} 171 Hz, 1b). 13: [a]D +29.0° (c 1.4); δ_H 4.574 (d, 7.9 Hz, 1b), 4.357 (d, 7.9 Hz, 1a); δC 103.0 (¹J_{CH} 158 Hz, 1b), 101.4 (¹J_{CH} 161 Hz, 1a). 14: [α]D +106° (c 0.9); δH 5.963 (dd, 3.1 and 12.2 Hz, 3b), 5.394 (d, 3.3 Hz, 1b), 5.324 (d, 8.5 Hz, 1a). 15: $[\alpha]_D$ +132° (c 1.3); δ_H 6.447 (d, 8.8 Hz, 1a), 5.939 (dd, 2.8 and 12.2 Hz, 3b), 5.412 (d, 3.4 Hz, 1b); δ_{C} 94.0 (¹J_{CH} 176 Hz, 1b), 90.2 (¹J_{CH} 172 Hz, 1a). 16: [α]_D +116° (c 1.0); δ_H 6.000 (dd, 3.1 and 12.2 Hz, 3b), 5.388 (d, 3.7 Hz, 1b), 5.271 (d, 8.5 Hz, 1a), 4.183 and 4.116 (2d, 17.4 Hz, OCH2CO), 2.063, 2.024, 2.007, 2.004, 1.728 and 1.343 (6s, 5Ac and CH2COMe). 17: 8H 6.810 (s, 1.82 H, PhMe3H2), 5.900 (dd, 3.0 and 12.1 Hz, 3e), 5.462 (d, 8.0 Hz, 1d), 5.390 (dd, 8.1 and 9.5 Hz, 2a), 5.357 (d, 3.6 Hz, 1e), 4.795 (d, 3.6 Hz, 1c), 4.448 (d, 7.7 Hz, 1b); δ_C 103.0 (¹J_{CH} 163 Hz, 1b), 100.1 (¹J_{CH} 170 Hz, 1c), 99.9 (¹J_{CH} 163 Hz, 1a), 99.7 (¹J_{CH} 163 Hz, 1d), 93.9 (¹J_{CH} 175 Hz, 1e). 22: δ_H 6.748 (s, 0.18 H, PhMe₃H₂), 5.965 (dd, 3.0 and 12.0 Hz, 3e). 18: [α]D +31.8° (c 1.1); $\delta_{\rm H}$ 6.794 (s, PhMe₃H₂), 5.386 (dd, 7.9 and 9.5 Hz, 2a), 5.307 (d, 2.1 Hz, 4e), 5.173 (d, 2.0 Hz, 4d); δC 103.0 (¹J_{CH} 163 Hz, 1b), 102.2 (¹J_{CH} 162 Hz, 1d), 100.0 (¹J_{CH} 172 Hz, 1c), 99.9 (¹J_{CH} 162 Hz, 1a), 99.2 (${}^{1}J_{CH}$ 170 Hz, 1e). 23; (α]D +28.9° (c 1.0); δ H 6.820 (s, PhMe₃H₂), 5.366 (dd, 7.8 and 9.5 Hz, H-2a), 5.104 (d, 2.4 Hz, H-4e or d); SC 102.92 (¹J_{CH} 163 Hz, 1b), 102.89 (¹J_{CH} 172 Hz, 1d), 101.0 (¹J_{CH} 170 Hz, 1c), 100.0 (¹J_{CH} 163 Hz, 1a), 96.9 (¹J_{CH} 170 Hz, 1e). 19: δ_H 6.843 (s, PhMc3H2), 6.470 (d, 3.7 Hz, 0.5 H, 1aa), 5.711 (d, 8.3 Hz, 0.5 H, 1ab). 20: 8H 6.854 and 6.843 (2s, in a ratio of 1:3, PhMe₃H₂). 21: $\delta_{\rm H}$ 6.860 (s, PhMe₃H₂), 5.880 (dd, 0.3 H, 2.7 and 52.8 Hz, 1a α), 5.472 (dd, 0.7 H, 5.8 and 52.8 Hz, 1aβ), 5.611 (d, 0.3 H, 2.8 Hz, 4ca), 5.592 (d, 0.7 H, 3.6 Hz, 4cβ). 24: [a]D +46.5° (c 0.2); δ_H 6.822 (s, PhMe₃H₂), 6.571 (d, 10.1 Hz, NH), 6.411 (d, 7.0 Hz, NH), 5.606 (d, 3.0 Hz, 4c), 1.050 (s, Bu¹), 0.881 (t, 6.7 Hz, CH₃). 25: $[\alpha]D + 17.0^{\circ}$ (c 0.1); δ_H 6.811 (s, PhMe₃H₂), 6.578 (d, 9.7 Hz, NH), 6.550 (d, 8.4 Hz, NH), 5.608 (d, 2.2 Hz, 4c), 5.426 (d, 10.0 Hz, NH), 5.114 (dd, 8.3 and 10.8 Hz, 2a), 1.005 (s, Bu¹), 0.879 (t, 6.6 Hz, 2CH₃). 26: [α]D +32° (c 0.05, Py); δ_H (49:1 (CD₃)₂SO-D₂O, 60°), 6.854 (s. PhMc₃H₂), 5.518 (td, 7.1 and 15.4 Hz, 5cer), 5.352 (dd, 6.7 and 15.4 Hz, 4cer), 4.849 (t, 9.0 Hz, 2a), 4.793 (d, 3.7 Hz, 1c), 4.731 (d, 4.0 Hz, 1e), 4.552 (d, 8.5 Hz, 1d), 4.544 (d, 8.2 Hz, 1a), 2.232 (s, 3PhMe), 1.826 and 1.831 (2s, 2NAc), 0.843 (t, 7.0 Hz, 2CH₃).

- 14 H. Bayley, D. N. Standring, and J. R. Knowles, Tetrahedron Lett., 19, 3633 (1978).
- 15 R. Bose and R. Scheffold, Angew. Chem., 88, 578 (1976); T. Ogawa and S. Nakabayashi, Carbohydr. Res., 93, C1 (1981).
- 16 S. Sato, M. Mori, Y. Ito, and T. Ogawa, Carbohydr. Res., 155, C6 (1986).
- 17 G. Excoffier, D. Gagnaire, and J.-P. Utille, Carbohydr. Res., 39, 368 (1975).
- 18 Wm. Rosenbrook, Jr., D. A. Rilcy, and P. A. Lartey, *Tetrahedron Lett.*, 26, 3 (1985); G. H. Posner and S. R. Haines, *ibid.*, 26, 5 (1985).
- 19 T. Mukaiyama, Y. Murai, and S. Shoda, Chem. Lett., 431 (1981); T. Mukaiyama, Y. Hashimoto, and S. Shoda, ibid., 935 (1983).
- Yu. G. Gololobov, I. N. Zhmurova, and L. F. Kasukhin, Tetrahedon, 37, 437 (1981); K. C. Nicolaou,
 T. Laulfield, H. Kataoka, and T. Kumazawa, J. 4m. Chem. Soc., 110, 7910 (1988).

(Received in Japan 24 July 1989)